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The p rob lem of wave absorpt ion  in an inhomogeneous impedance layer  is a f a m i l i a r  one in acoust ics  and 
e lec t rodynamics .  In prac t ice ,  impedance sys t ems  are  designed with account for  known opt imum 
r e q u i r e m e n t s ,  the mos t  impor t an to f  which is the r e qu i r e me n t  that the absorbing  layer  be of m i n i mum 
thickness.  The cor responding  mathemat ica l  p rob lems  for  sound abso rbe r s  in a i r  were  t reated by var ious  
a r t i f ic ia l  approaches toward the end of the 1930's by Malyuzhinets ,  who at t racted the at tention of the 
authors ,  and by Svirski i ,  in a d i s se r t a t ion  (Moscow State Univers i ty ,  1943). S imi la r  (and more  general)  
opt imizat ion p rob lems  can be studied sys temat ica l ly  when they a re  t reated as Mayer -Bo lza  var ia t iona l  
p rob lems .  That point of view is adopted in this paper ,  in which the thickness of an inhomogeneous layer  
on which a p lane  monochromat ic  wave is incident  normal ly  is min imized .  

1. Basic  equations and fo rmula t ion  of the opt imizat ion problem.  The equat ions for the sound field in an 
inhomogeneous medium are  [1] 

Op ~ _ p c ~ d i v v = 0 ,  0v 0"-Y 0-y-b g r a d p = 0 ,  (1.1) 

where  p is the sonic p r e s s u r e ,  v is the veloci ty in the sound wave, and p and c a re  the densi ty of the medium and the 
sound veloci ty  in it. In genera l ,  p and c a r e  funct ions of the coordinates .  

Assuming  norma l  incidence of a plane monochromat ic  wave (a t ime dependence e - iwt  is assumed throughout this 
paper)  on an inhomogeneous layer  whose p rope r t i e s  depend on only one coordinate,  we wri te  (1.1) as 

~_t dp top + pc~ d~- = O, - - i ( o v _ ~ - ~ - = O .  (1.2) 

Using 

g = - -  v /p  (1.3) 

to r ep lace  the osc i l l a to ry  velocity and p r e s s u r e  by the input admit tance  g, we eas i ly  find f rom Eqs. (1.2) the following: 

~x = - -  i ~c~ -[- i~ (1.4) 

We as sume  that the medium f rom which the p lane  wave is incident on the l ayer  is charac te r ized  by an acoust ic  
impedance  P0C0, and that the medium (or sys t em of media) behind the inhomogeneous layer  is charac te r ized  by an 
input admi t tance  g(0) (Fig. 1). We fu r t he r  a s sume  that the layer  is a r t i f ic ia l ly  made inhomogeneous by d i rec t ional  
changes in Pm and c m of the ini t ia l  ma te r i a l .  We int roduce the notat ion 

o Pm k2 = co ~ G=p0cog, ~ = - - x ,  - - = p ~  - -  (1.5) 
C0 P0 C~ 2 

and rep lace  (1.4) by an equation for  the d imens ion les s  input admit tance:  

d G  . k ~ 
d-u = - -  ~ 7 -k ip~ L (1.6) 

Below, we use  the notat ion 

k ~ = i + ( t + i n )  Q(x) (1.7) 

for  the square  of the d imens ion les s  propagat ion cons tant  in the inhomogeneous layer.  This method of wri t ing the 
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propagat ion constant  covers many p rob lems  of wave propagat ion in m a n - m a d e  acoust ic  media  [2, 3]. Assuming  f inal ly  
that p~ = 1, i . e . ,  a s suming  that the inhomogeneity in the layer  is due only to a coordinate-dependent  propagat ion 
cons tan t  k('r), we rep lace  (1.6) by a sys tem of equations for  the r ea l  and imaginary  par t s  of the admit tance G = p + iq: 

dp 
Dp -~ ~ -  - -  ~IQ + 2pq = o, Dq ~ dqd,~ - -  ~-nZ + q2 + i + Q = O. (1.8) 

An analogous sys tem of equations can eas i ly  be obtained for no rma l  incidence of a plane magnet ic  wave on an 
inhomogeneous layer.  

We turn  now to the fo rmula t ion  of the opt imizat ion problem.  The  phase coordinates  p and q, which desc r ibe  the 
behavior  of the sys tem,  sat isfy  different ia l  equations (1.8). The posi t ion of the sys tem at the ini t ial  point  ~- = 0 is 
given by 

p(O) = p(0), q (0) = q~0). (1.9) 

We r equ i r e  that the values  of the phase coordinates  P(~-e) and q(~-e) at some (not fixed) value ~r = ~-e be re la ted  by 

Tp--~P (x l ) - -Pl  = 0, Yq~ q ( ' q ) - - q t  =0- (1. 10) 

F u r t h e r m o r e ,  we a s sume  

~p ~ Q ( N - Q ) - v  z = 0 ,  (1.11) 

where,  in co r respondence  with the genera l ly  accepted terminology,  Q and v a re  control  functions.  The funct ion v is 
an addit ional  control  introduced in o rde r  that the r e s t r i c t i on  on Q contained in the inequali ty N - Q >- 0 (the condition 
for  the physical  rea l iza t ion  of the inhomogeneous- layer  model) could be wri t ten  as the equivalent  equality (1.11). This 
is a fundamenta l  point,  s ince  it p e r m i t s  the reduct ion of the var ia t iona l  p rob lem with a one-s ided  ex t remum to a 
p rob lem with an a r b i t r a r y  ex t remum.  

The opt imizat ion problem is formula ted  in the following manner .  We are  to de te rmine  the phase coordinates  
p('r) and q(T) which sat isfy  Eq. (1.8) and the ini t ia l  condit ions (1.9), and the control  funct ions Q and v re la ted  by (1.11), 
such that the funct ional  

J = T e ( 1 . 1 2 )  

has a m i n i m u m ,  when conditions (1.10) hold. Because  of the r e s t r i c t i ons  on the function Q, f ini te  d iscont inui t ies  a re  
pe rmi t t ed  in the phase -coord ina tes  der iva t ives  dp/d~- and dq/d~- in the in terva l  0 < ~- - ~-l" The functions p(~-) and q(~-) 
a re  assumed  continuous over  the en t i re  interval .  

2. Neces sa ry  conditions for  the s ta t tonar t ty  of the func t i ona l  As usual ,  these conditions are  obtained f rom an 
examina t ion  of the f i r s t  va r ia t ion  of the express ion  

T l 

I = J + f [EvDP + ~.qDq - -  ~t~] d'~ + ZvTv + ZqTq, (2.1) 
o 

in which hp(r),  hq('r), p(T), Xp, and Xq are  unde te rmined  Lagrange mul t ip l i e r s .  The r ight -hand side of (2.1) differs 
f rom g by vanishing,  so that the J and I s ta t ionar i ty  condit ions a re  the same.  In each subin terva l  between switching 
points  (i. e . ,  be tween the d iscont inui t ies  in Q), we have: sys tem (1.8); Eq. (1.11); the equations 

dLp d~q 
d'-'~ = 2 q ~ p -  2p~.o, ~ = 2pk v + 2q~,q, (2.2) 

~ q L v U L q + I x ( N - - 2 Q ) = O  , 2~v = 0 ;  (2.3) 

the boundary  condit ions on Xp and Xq, 

and the equation 

Xv(v3 + ~ [J + zpTv + zqYq] = O, 

0 ~q (~z) + ~ [J + x~Y~ + Z~Tql = O; (2.4) 
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At the switching points,  the phase coordinates  p(-r) and q(-r) mus t  be continuous,  
W e i e r s t r a s s  condit ions mus t  be  sat isf ied:  

~p- (~M) = ~ y  (~) ,  k((~M) = ~ ( ( ~ ) ,  

[~p_dp- dq ~ ^ ~ ~lq+] =0 .  

and the following E r d m a n -  

(2.6) 

El imina t ing  the mul t ip l i e r s  • and Xq f rom (2.4) and (2.5) with account of (1.10) and (1.12), we find 

, , d p ( T e )  , , d q ( ~ e )  
)~p ~e) ~ + k~ ~ )  ~ = i. (2.7) 

If the r ight -hand sides of Eqs. (1.8) and (1.11) do not explieity depend on T, equality (2.7) holds for  any -r, which in 
this case is the f i r s t  in tegral  of Eqs. (1.8) and (2.2): 

H = Hx + H ~  =-- ~ v b l Q -  2pq]§  

+ )~q[- l -  Q + p Z - q 2 ]  + u~ = t. (2.8) 

3. Ex t r eme  pa r t i a l  aros.  It is evident  f rom (2.3) that we can sat isfy the second equation by e i ther  setting/~ = 0 
(the so -ca l l ed  s ingular  equation) or  by set t ing v = 0. The s ingular  equation de te rmines  those par t s  of the opt imum 
t r a j ec to ry  in the admit tance  plane which can be found independently of the r e s t r i c t i ons  on the control  funct ion Q, as is 
eas i ly  seen.  It follows f rom the f i r s t  equation in (2.3) that, in this case,  we have 

~l~p -- ~ = O, (3.1) 

but it  then follows f rom (2.2) that PO-) vanishes  identically;  according to the f i r s t  equation in (1.8), this means  that 
the funct ion Q(~-) also vanishes.  

The case v = 0 leads to other parts of the extreme admittance hodograph. It follows from (i.ii) that, in this case, 

Q(I-) is equal to either 0 or N (the maximum possible value). 

Accordingly,  the ex t reme arcs  are  hodographs cor responding  to constant  wave numbers .  In this case,  sys tem 
(1.8) is eas i ly  integrated:  we find 

p + i q  = p o - ~ - i q o - - i  l / l - ~ - ( ~ - i ~ l ) Q + t g [ v  ]fi ~-O-~)'Q] 
l -- i (po + iqo) [ Vi + (l 7- i~l) Q 1-i_}_ tg iv 1/f-:~ (i + iTI) Q] 

(3.2) 

Here  Q = 0, N; (P0, q0) is the point  on the admit tance plane cor responding  to the beginning of the T change in any 
sub in te rva l  within which Q r ema ins  constant.  It is easy to see that sys tem (2.2) for  the Lagrange  mul t ip l i e r s  Xp and 
Xq can also be integrated in closed form.  In this case,  however, it is not n e c e s s a r y  to obtain explici t  express ions  for  
these mul t ip l i e r s ,  s ince  the min imum layer  width T l and the opt imum admit tance  hodograph can be found on the bas i s  
of p and q alone [Eq. (3.2)]. This  is t rue  because  there  is only one switching for  each of the control  funct ions Q(~-) in 
the regions  r >~ 0 (see below). To prove this la t ter  asse r t ion ,  we will proceed as in the theory of opt imum sys tems  
[4]: 

4. Sequence of ex t reme  par t i a l  a rcs .  We rewr i te  the f i r s t  in tegral  of (2.8) as 

Hx ~ K Q - -  2 pq~p + (p2 _ q~--t) ~q = 1, 

where 

(4.1) 

O H  x 
K -  oo = ~ - - ~ q "  (4.2) 

Since both the phase coordinates p and q and the Lagrange multipliers Xp and Xq must be continuous at the switching 
point, we conclude from (4.1) that the first integral is constant at the switching point only if the "switching" function 

K vanishes at this point (since Q changes discontinuously here). It follows from (4.2) for function K and from the 

principle of the maximum that the functional H X reaches a maximum at Q = N with optimum control functions if K > 0 
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and at Q = 0 if K < 0. Vie can thus d e t e r m i n e  f r o m  the sign of the switching function whether  the opt imum par t i a l  a rc  
co r r e sponds  to Q = 0 o r  Q = N. F r o m  the behav io r  of the switching function near  the switching point we can d e t e r m i n e  
whether  a switching occurs  f rom Q = 0 to Q = N, o r  v i ce  ve r sa .  F o r  this purpose ,  using (4.2) and {2.2) and the 
exp re s s ion  fo r  the f i r s t  in tegra l  in the f o r m  (4.1), we obtain the fol lowing di f ferent ia l  equation fo r  the switching 
function: 

where  

dE [ p p(l+n~)(Q--2n-lpq) ] K q-(i +~g)p (4.3) ~ =  q ~ @ �9 ' 

= 2pq ~- ~l (l -k p~ - -  q2). (4.4) 

Rep re sen t i ng  the function K by a Taylor  s e r i e s  near  the switching point, and taking into account (2.6) and (2.7), 
we obtain f rom this equation the fol lowing conditions fo r  the opt imum a rcs  with max imum and vanishing Q: 

(I +~2) p (~--  TM) ~ 0. (4.5) O 

On phys ica l  grounds,  we see  that p cannot be negat ive;  we t h e r e f o r e  conclude f r o m  (4.5) that only Q t rans i t ions  f r o m  
0 to N a re  poss ib le  where  ~ > 0 on the admi t tance  plane and only f r o m  0 to N where  ~ < 0. It fol lows that the e x t r e m e  
admi t tance  hodograph contains only one switching point  in each region:  f r o m  0 to N in the ~ > 0 reg ion  and f r o m  N to 
0 in the ~ < 0 region (if, of course ,  the phase  point r e tu rns  to the reg ion  on the admi t tance  plane at which its mot ion 
began, a second switching may  occur  in this region; but again conditions (4.5) hold). The in te r sec t ion  of the e x t r e m e  
admi t tance  hodographs and the boundary of these reg ions  occu r s  in the fol lowing manner .  F r o m  the condition fo r  the 
boundedness of the switching function and f r o m  Eq. (4.3), we find an express ion  fo r  K at point on the hyperbola  (~ = 0: 

K = l (4.6) 
Q --  2~l-lpq" 

Using the p r inc ipa l  of the max imum,  we find f r o m  (4.6) that the opt imum admi t tance  hodograph cor respond ing  to 
the solut ion of sy s t em (1.8) at Q = N may  i n t e r s e c t  the hyperbola  only at points at which 

2pq = ~l ( - -  i + p~ -- q~) ~ ~]N. (4.7) 

In an analogous manner ,  we find that the pa r t i a l  a r c s  of the opt imum admi t tance  hodograph for  which Q = 0 c r o s s  

the boundary of the regions  ~, >- 0 at 

2~1 -~ pq ~ O, i. e .  , q ~ O. (4.8) 

Inequal i t ies  (4.7) and (4.8) thus show that op t imum t rans i t ions  f r o m  the ~ > 0 region to the ~ < 0 reg ion  (or v i c e  
ve r sa )  along admi t tance  hodographs co r respond ing  to the max imum and min imum values  of the propagat ion constant  
may  occur  only at spec i f ic  segments  of the boundary of these  regions .  This is shown in Fig.  2, where  these  regions  
a r e  hatched and where  we are  given the Q values  at which the cor responding  t rans i t ions  may occur .  
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Finally,  we show two examples of const ruct ing optimum inhomogeneous layers  corresponding to the ex t reme 
hodographs pass ing  through the points (6.6, 7), (1,0) and (2 , -1 ) ,  (1, 0). 

In the first case, the admittance hodograph is completely in the region 4, > 0; in the second, it begins at the 
point (2, --1) in region 4, < 0, passes  ac ross  the hyperbola  ~ = 0, and ends at the point (1, 0). Both problems a re  easi ly  
solved graphical ly ,  as shown in Figs .  3 and 4. We cons t ruc t  a hodograph pass ing through the point (1, 0) by integrating 
sys tem (1.8) backwards  with Q = N, and we const ruct  the hodograph 

1[31=coast II 3]={IH_p)~+q~ ' 

which passes through the point (6.6, 7). After graphically finding the intersection of these hodographs, we find the 
unknown thicknesses of the two homogeneous layers according to Eq. (3.2). Along each Q = N curve or Q = 0 curve in 

Figs. 3 and 4 are scale markers corresponding to the reduced layer thicknesses. The calculations were carried out 
according to Eq. (3.2) for Q =N andQ= 0. 
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In the second example, one must construct, in addition to the hodograph beginning at the point (i, 0), and 
analogous hodograph beginning at (+2, -i), which represents the load admittance. In this case, as is easily seen from 
Fig. 4, there is a family of extreme hodographs consisting of successive arcs corresponding to solutions of systems 

(1.8) at Q = N, Q = 0, Q = N. The optimum solution will be that for which the thickness of the inhomogeneous layer, 
which now consists in general of three homogeneous layers, is at a minimum. This hodograph is found graphically by 
simply choosing the proper circle lfl[ = const (Fig. 4). 
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These problems can, of course, also be solved very effectively by computers. For this purpose, one must 
integrate the equations of system (1.8) for p and q under conditions (1.9) and Eqs (2.2) for the Lagrange multipliers 
Xp and Xq. The sequences of Q values in Eqs. (1.8) are set up automatically, depending on the behavior of the 
switching function K = ~p - Xq. The greatest difficulty here is that the values for Xp and Xq at the beginning of the 
integration are not known beforehand. They must be determined by trial and error; values must be chosen until 
integration of systems (1.8) and (2.2) satisfies condition (4.1) and condition (1.9) at the end of the interval. Actually, it 
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is n e c e s s a r y  only to choose the rat io kp/kq, s ince  the switching signs (when there  a re  discont inuous changes in the 
function Q) are de te rmined  by the zeros of the switching function, whose posi t ions do not depend on mul t ip l ica t ion  of 
this function by an a r b i t r a r y  constant.  F igu re  5 i l l u s t r a t e s  this poss ibi I i ty  with the resu l t s  of a soIution of the same  two 
p rob lems  on an MN-8 analog computer .  
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